Quest Journals Journal of Research in Applied Mathematics Volume 7 ~ Issue 6 (2021) pp: 29-33 ISSN(Online) : 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org

A Study on Symmetric Subgroups

A.Punitha Tharani¹ and V.Uma Maheswari²

¹Associate Professor, ²Research Scholar ^{1,2} Department of Mathematics ,St.Mary's College (Autonomous) , Thoothukudi-628 001,Tamilnadu,India. Affiliated to Manonmaniam Sundaranar University Abishekapatti,Tirunelveli-627012,Tamilnadu,India. Corresponding Author: V.Uma Maheswari

ABSTRACT: In this note we define symmetric subgroups under the operators composition and plus circle compo. Also we derive some results based on the above concepts. **KEYWORDS:** Symmetric groups, Symmetric subgroups, Composition, Plus circle compo.

Received 06 June, 2021; Revised: 18 June, 2021; Accepted 20 June, 2021 © *The author(s) 2021. Published with open access at www.questjournals.org*

I. INTRODUCTION

In mathematics, the symmetric group on a set is the group consisting of all bijections of the set (all oneto-one and onto functions) from the set to itself with function composition as the group operation. The symmetric group is important to diverse areas of mathematics such as Galois theory, invariant theory, the representation theory of Lie groups, and combinatorics. Cayley's theorem states that every group G is isomorphic to a subgroup of the symmetric group on G.

II. PRELIMINARIES

Definition 2.1:

Let A be a finite set containing n elements. The set of all permutations of A is clearly a group under the composition of functions. This group is called the symmetric group of degree n and is denoted by S_{n} . **Definition 2.2:**

Let G be a group, a subset H of G is called a subgroup of G if H itself is a group under the operation induced by G.

Definition 2.3: (Reverse Composition - O_R)

Let us consider a symmetric group S₂. The elements of S₂ are $\{\binom{12}{12}, \binom{12}{21}\} = \{e, p_1\}$

The Reverse Composition is defined as in S₂, $eO_R p_1 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} O_R \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$

The composition mapping is $1 \Rightarrow 1 \Rightarrow 2$ here we define the reverse composition mapping as

It's clearly O_R is also a binary operation.

Definition 2.4:

We define a new operation in composition mapping on S_3 , that is called as plus circle compo,

Table 1.Plus circle compo						
$+^{o}$	е	p_1	p_2	<i>p</i> ₃	p_4	p_5
е	е	p_1	p_2	<i>p</i> ₃	p_4	p_5
p_1	p_1	p_1	е	е	е	е
p_2	p_2	е	p_2	е	е	е
<i>p</i> ₃	<i>p</i> ₃	е	е	<i>p</i> ₃	е	е
p_4	p_4	е	е	е	p_4	е
p_5	p_5	е	е	е	е	p_5

III. MAIN RESULTS

Definition 3.1:

Let S_2 be a set with a binary operation 'o' defined on it.Let $S \subseteq S_2$. If for each $e,p_1 \in S$,

*e o p*₁ is in S. we say that S is Symmetric closed with respect to the binary operation 'o'. In generally ,Let S_n be a set with a binary operation 'o' defined on it.Let $S \subseteq S_n$. If for each $e, p_1 \in S$, *e o p*₁ is in S. we say that S is Symmetric closed with respect to the binary operation 'o'.

Example 3.2:

Let us consider a symmetric group S₂. The elements of S₂ are $\{\binom{12}{12}, \binom{12}{21}\} = \{e, p_1\}$

Let $S = \{e, p_1\}$. Then $e \circ p_1 = p_1 \in S \implies S$ is Symmetric closed in S_2 .

Definition 3.3:

A subset S of a Symmetric group (S_2, o) is called a symmetric subgroup of S_2 if S forms a group with respect to the binary operation in S_2 .

Definition 3.4:

A subset S of a Symmetric group (S_3, o) is called a symmetric subgroup of S_3 if S forms a group with respect to the binary operation in S_3 .

Example 3.5:

Let us consider a symmetric group S_3 . The elements of S_3

 $\{\binom{1\,2\,3}{1\,2\,3},\binom{1\,2\,3}{2\,3\,1},\binom{1\,2\,3}{3\,1\,2},\binom{1\,2\,3}{1\,3\,2},\binom{1\,2\,3}{1\,3\,2},\binom{1\,2\,3}{1\,3\,2},\binom{1\,2\,3}{3\,2\,1},\binom{1\,2\,3}{2\,1\,3}\}=\{e,\,p_1,\,p_2,p_3,p_4,p_5\}$

Let $S = \{e, p_1, p_2\}$. Then $e \circ p_1 = p_1 \in S$

(i)Clearly S is symmetric closed

(ii) Associative:

 $(e \ o \ p_1)op_2 = p_1op_2 = e \ and \ e \ o \ (p_1op_2) = e \ o(e) = e$

(iii) Identity:

There exists an element $e \in S$ such that $e \circ p_1 = p_1 \circ e = e$ for all $p_1 \in S$

(iv) Inverse:

For any element $p_1 \in S$, There exists an element $p_2 \in S$ such that $p_2 \circ p_1 = p_1 \circ p_2 = e$

 \rightarrow S is Symmetric closed in S₃.

Theorem 3.6:

Let S be symmetric subgroup of (S_2, o) then

(i) The identity element of S is the same as that of S_2 .

(ii) For each $p_1 \in S$ the inverse of p_1 in /s is the same as the inverse of p_1 in S₂.

Proof:

(i) Let e and e' be two identity element of S₂. Then eo e' = e'(since e is an identity element) Also e'oe = e (since e' is an identity element) e =e'
(ii) Let P₁ and P₁' and P₁'' be two inverse of P, Here P₁oP₁ = P₁'oP₁ = e and P₁oP₁'' = P₁''oP₁ = e P₁' =P₁'o e = P₁'(P₁oP₁'') = (P₁'oP₁)P₁'' P₁' = e o P₁'' = P₁'' The inverse of P₁ is unique

Theorem 3.7:

Let S be symmetric subgroup of $(S_3, 0)$ then

(i) The identity element of S is the same as that of S_3 .

(ii) For each $p_1 \in S$ the inverse of p_1 in /s is the same as the inverse of p_1 in S₃.

Proof:

(i) Let e and e' be two identity element of S₃. Then eo e' = e'(since e is an identity element) Also e'oe = e (since e' is an identity element) e =e'
(ii) Let P₁and P₁' and P₁" be two inverse of P, Here P₁oP₁ = P₁'oP₁ = e and P₁oP₁" = P₁"oP₁ = e
P₁' = P₁'o e = P₁'(P₁oP₁") = (P₁'oP₁)P₁" P₁' = e o P₁" = P₁" The inverse of P₁ is unique

Theorem 3.8:

A Symmetric subgroup (S_2) can have at most one identity that are equal. **Proof:**

Let the element of $S_2=\{e,p_1\}$ Take the symmetric subgroup, $S=\{e,p_1\}$ If e and e' are both identities. Then e=eoe'=e'

Similarly, e'=e'oe = e = e'Therefore each symmetric subc

Therefore each symmetric subgroup have at most one identity, e = e'

Theorem 3.9:

A Symmetric subgroup (S_3) can have at most one identity that are equal. **Proof:**

Let the element of S_3

 $\{\binom{1\,23}{1\,2\,3}, \binom{1\,2\,3}{3\,1\,2}, \binom{1\,23}{3\,1\,2}, \binom{1\,23}{1\,3\,2}, \binom{1\,23}{3\,2\,1}, \binom{1\,23}{2\,1\,3}\} = \{e, p_1, p_2, p_3, p_4, p_5\}$ Take the symmetric subgroup, $S = \{e, p_1, p_2\}$

If e and e' are both identities. Then e = eoe' = e'Similarly, e' = e'oe = e = e'Therefore each symmetric subgroup have at most one identity, e = e'

Proposition 3.10:

Inverse of a symmetric subgroup (S_2, O) is also a symmetric subgroup. **Proof:**

Let $S_2 = \{e, p_1\} = \{\binom{1 \ 2}{1 \ 2}, \binom{1 \ 2}{2 \ 1}\}$ And let $S = \{e, p_1\}$ and $S^{-1} = \{e, p_1\}^{-1} = \{\binom{1 \ 2}{1 \ 2}, \binom{1 \ 2}{2 \ 1}\}$ $S^{-1} = \{\binom{1 \ 2}{1 \ 2}, \binom{1 \ 2}{2 \ 1}\} (e^{-1} = \binom{1 \ 2}{1 \ 2})P_1^{-1} = \binom{1 \ 2}{2 \ 1})$ $S^{-1} = S$ is also a symmetric subgroup under

 $S^{-1} = S$ is also a symmetric subgroup under composition

Proposition 3.11:

Inverse of a symmetric subgroup (S_3, o) is also a symmetric subgroup.

Proof:

Let $S_3 = \{e, p_1, p_2, p_3, p_4, p_5\}$ $S^{-1} = \{e, p_1, p_2\}^{-} = \{e^{-1}, p_1^{-1}, p_2^{-1}\}$ $e = {\binom{123}{123}}, p_1 = {\binom{123}{231}}, p_2 = {\binom{123}{312}}$ $(e)^{-1} = {\binom{123}{123}}^{-1} = {\binom{123}{123}} = e$ $(p_1)^{-1} = {\binom{123}{231}}^{-1} = {\binom{123}{312}} = p_2$ $(p_2)^{-1} = {\binom{123}{312}}^{-1} = {\binom{123}{231}} = p_1$ $\Rightarrow S^{-1} = S = \{e, p_1, p_2\}$

→ Inverse of a symmetric subgroup (S_3, o) is also a symmetric subgroup.

Definition 3.12:

Let S_2 be a set with a binary operation ' O_R ' defined on it. Let $S \subseteq S_2$. If for each $e, p_1 \in S$, *e* $O_R p_1$ is in S. we say that S is Symmetric closed with respect to the binary operation ' O_R '. **Example 3.13:** Let us consider a symmetric group S_2 . The elements of S_2 are $\{\binom{12}{12}, \binom{12}{21}\} = \{e, p_1\}$

Let $S = \{e, p_1\}$

Then $e O_R p_1 = p_1 \epsilon S$

 \rightarrow S is Symmetric closed in S₂.

Definition 3.14:

Let S_3 be a set with a binary operation '+^o' defined on it.Let $S \subseteq S_3$. If for each $e, p_1 \in S$,

 $e + {}^{o} p_1$ is in S. we say that S is Symmetric closed with respect to the binary operation $+ {}^{o}$.

Example 3.15:

 $p_{2}, p_{3}, p_{4}, p_{5} \}$ Let $S = \{e, p_{1,}, p_{2}\}$ Then $e + {}^{o} p_{1} = p_{1} \in S$ (i)Clearly S is symmetric closed (ii) Associative: $(e + {}^{o} p_{1}) + {}^{o} p_{2} = p_{1} + {}^{o} p_{2} = e$ $e + {}^{o} (p_{1} + {}^{o} p_{2}) = e + {}^{o} (e) = e$

(iii) Identity:

There exists an element $e \in S$ such that $e + p_1 = p_1 + e_2 = e$ for all $p_1 \in S$

(iv) Inverse:

For any element $p_1 \in S$, There exists an element $p_2 \in S$ such that $p_2 + {}^o p_1 = p_1 + {}^o p_2 = e$

 \rightarrow S is Symmetric closed in S₃.

Definition 3.16:

A subset S of a Symmetric group (S_2, O_R) is called a symmetric subgroup of S_2 if S forms a group with respect to the binary operation in S_2 .

Definition 3.17:

A subset S of a Symmetric halfgroup $(S_3, +^{o})$ is called a symmetric subgroup of S_3 if S forms a group with respect to the binary operation in S_3 .

Theorem 3.18:

Let S be symmetric subgroup of (S_2, O_R) then

(iii) The identity element of S is the same as that of S_2 .

(iv) For each $p_1 \in S$ the inverse of p_1 in /s is the same as the inverse of p_1 in S₂.

Proof:

(iii) Let e and e' be two identity element of S₂.
Then
$$e O_R e' = e'$$
(since e is an identity element)
Also $e' O_R e = e$ (since e' is an identity element)
 $e = e'$
(iv) Let P₁ and P₁'' and P₁'' be two inverse of P,
Here P₁ O_R P₁ = P₁' O_R P₁ = e and
P₁ O_R P₁'' = P₁'' O_R P₁ = e
P₁' = P₁' O_R e = P₁' O_R (P₁ O_R P₁'')
 $= (P_1' O_R P_1) O_R P_1''$
P₁' = $eO_R P_1'' = P_1''$

The inverse of P_1 is unique

Theorem 3.19:

Let S be symmetric subgroup of $(S_3, +^{o})$ then

(i)The identity element of S is the same as that of S_3 .

(ii)For each $p_1 \in S$ the inverse of p_1 in s is the same as the inverse of p_1 in S₃. **Proof:**

(i)Let e and e' be two identity element of S_3 .

Theorem 3.20:

A Symmetric subgroup (S_2) can have at most one identity that are equal.

Proof:

Let the element of $S_2 = \{e, p_1\}$ Take the symmetric subgroup, $S = \{e, p_1\}$ If e and e' are both identities. Then $e = e O_R e' = e'$ Similarly, $e'=e' O_R e = e$ e = e'Therefore each symmetric subgroup have at most one identity, e = e'Theorem 3.21: A Symmetric subgroup (S_3) can have at most one identity that are equal. **Proof:** Let the element of $S_3\{\begin{pmatrix} 1&23\\ 2&3&1 \end{pmatrix}, \begin{pmatrix} 1&23\\ 2&3&1 \end{pmatrix}, \begin{pmatrix} 1&23\\ 3&1&2 \end{pmatrix}, \begin{pmatrix} 1&23\\ 1&3&2 \end{pmatrix}, \begin{pmatrix} 1&23\\ 3&2&1 \end{pmatrix}, \begin{pmatrix} 1&23\\ 2&1&3 \end{pmatrix}\} = \{e, p_1, p_2, p_3, p_4, p_5\}$ Take the symmetric subgroup, $S = \{e, p_1, p_2\}$ If e and e' are both identities. Then e = e + e' e' = e'Similarly, e' = e' + e' = ee = e'Therefore each symmetric subgroup have at most one identity, e = e'**Proposition 3.22:** Inverse of a symmetric subgroup (S_2, O_R) is also a symmetric subgroup. **Proof:** Let $S_2 = \{e, p_1\} = \{\binom{1 \ 2}{1 \ 2}, \binom{1 \ 2}{2 \ 1}\}$ And let S={e,p₁} S⁻¹ = {e,p₁}⁻¹ = { $\binom{12}{12}, \binom{12}{21}$ } S⁻¹ = { $\binom{12}{12}, \binom{12}{21}$ } (e⁻¹ = $\binom{12}{12}$ P⁻¹ = $\binom{12}{21}$) $S^{-1} = S$ is also a symmetric subgroup under composition **Proposition 3.23:** Inverse of a symmetric subgroup $(S_{3}, +^{o})$ is also a symmetric subgroup. **Proof:** Let $S_3 = \{e, p_1, p_2, p_3, p_4, p_5\}$ $S^{-1} = \{e, p_1, p_2\}^{-1} = \{e^{-1}, p_1^{-1}, p_2^{-1}\}$ $= \{e^{-}, y\}$ $e = \binom{123}{123}$ $p_{1} = \binom{123}{231}$ $p_{2} = \binom{123}{312}$ $(e)^{-1} = \binom{123}{123}^{-1}$ $= \binom{123}{123} = e$ $(p_{1})^{-1} = \binom{123}{231}^{-1}$ $\begin{array}{l} (p_{1}) & (p_{2}) \\ = \begin{pmatrix} 1 & 23 \\ 3 & 1 & 2 \end{pmatrix} \\ (p_{2})^{-1} & = \begin{pmatrix} 1 & 23 \\ 3 & 1 & 2 \end{pmatrix}^{-1} \\ = \begin{pmatrix} 1 & 23 \\ 2 & 3 & 1 \end{pmatrix} \\ = p_{1} \\ \begin{array}{l} \Rightarrow S^{-1} = S = \{e, p_{1}, p_{2} \} \end{array}$ \rightarrow Inverse of a symmetric subgroup (S₃, +^o) is also a symmetric subgroup. **REFERENCES:**

- Arumugam, S and Issac, A.T. Modern Algebra, Scitech publications (India) Pvt.Ltd.2003. [1]. Bruce E Sagan. The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions (2nd ed.). GTM 203, [2]. Springer, 2001.
- [3]. William Fulton and Joe Harris. Representation Theory: A First Course. GTM 129, Springer, 1991.
- [4]. Yufei Zhao. Young tableaux and the representations of the symmetric group. The Harvard College Mathematics Review, 2(2):33-45,2008